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An electromagnetic and multi-dimensional macroscale particle simulation code (MACROS) 
is presented which enables us a large time and spatial scale kinetic simulation of magnetized 
plasmas. Particle ions, finite mass electrons with the guiding-center approximation, and a 
complete set of Maxwell equations are employed. Implicit field-particle coupled equations are 
derived in which a time-decentered (slightly backward) finite differential scheme is used to 
achieve stability for large time and spatial scales. It is shown analytically that the present 
simulation scheme suppresses high frequency electromagnetic waves and that it accurately 
reproduces low frequency waves in the plasma. These properties are verified by numerical 
examination of eigenmodes in a 2D thermal equilibrium plasma and by that of the kinetic 
Alfven wave. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

There is a wide variety of physics problems that have MHD time and spatial 
scales yet showing kinetic natures. For example, an intense electron beam injected 
into a magnetized plasma is subject to kink instability [l], but this transient 
behavior cannot be treated by the MHD simulation code because of rnu~ti-va~~~~ 
particle velocity distribution and divergence of the current density especially at the 
beam front. Another example is a propagation of the kinetic Alfven wave [2] which 
has an MHD wavelength along the ambient magnetic field while wav~-~art~c~~ 
interactions are essential due to finite ion Larmor radius effect. 

If an explicit particle code is adopted to these studies, one is bound by stoops 
restrictions on the spatial length and time scales. These restrictions are dx -=c 1, an 
mpe At < 1, where Ax is the grid spacing, At is the time step, & is the Debye len 
and upe = (4nne2/m,)‘/2 ,is the electron plasma frequency [3]. Many efforts 
been made in the past to relax these restrictions imposed on the convent 
particle code. The implicit moment method which was proposed by Mason [ 
Denavit [S] in analogy to the fluid calculations utilizes a time-decentering and 
some prediction technique for the future velocity moments. This method was 
successfully implemented for two-dimensional electromagnetic plasma sirn~l~~~o~s 
(the Venus Code [6,7]). The other type of implicit simulation model whi 
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called the direct implicit method introduces to the equation of motion a time low- 
pass filter on the basis of linear analysis of wave stability [S, 91. An electromagnetic 
version of this method was also implemented [lo, 111. So far, however, an 
inhomogeneity of the plasma has not been included in these models for w, At P 1 
case, where w,, is the electron cyclotron frequency. 

The Macroscale Particle Simulation Code (MACROS) to be described in this 
paper has been developed in a phylosophy such that its numerical properties are 
transparent even in highly nonlinear regimes and that the inhomogeneity effects are 
easily to be incorporated in the simulation code. The first point has been realized 
by introducing a time-decentered (slightly backward) discretization technique both 
into the equations of motion and the Maxwell equations [ 12, 13). These equations 
are combined to yield fully implicit field-particle coupled equations. The second 
point is to be achieved by adding implicit source terms to the field-particle coupled 
equations. The present scheme brings forth an artificial, almost pure damping 
of high frequency waves with odt > 1, where w is the characteristic frequency of 
the wave. An introduction of the artificial damping of high-frequency waves by 
modifying the Maxwell (field) equations is similar to the moment implicit method 
[6]. A major difference of the moment method and the present method is the way 
to predict the current and charge densities of the future time level. In the MACROS 
code, the current and charge densities are expressed as direct sums of particle and 
field quantities. 

To summarize, the macroscale particle simulation code has the features of both 
the magnetohydrodynamic (MHD) fluid code and the particle code. However, 
MACROS code includes a large scale electrostatic potential field and the response 
of the electrons to slowly varying fields; the ion finite Larmor radius effects are also 
retained. Therefore, the MACROS code is applicable to simulations of large 
(MHD) scale, nonlinear plasma phenomena where the kinetic effects are essential. 

In Section 2 of this paper, methodology and implementation of the macroscale 
particle simulation code are to be described. Linear stability of this scheme will be 
analytically shown in Section 3. Section 4 will be dedicated to numerical examples 
to verify the present simulation scheme; electromagnetic eigenmodes in a two- 
dimensional magnetized plasma will be shown. A propagation and Landau 
damping of the finite amplitude kinetic Alfven wave will then be demonstrated. 
Section 5 will be a summary and conclusion of this paper. Some comments on the 
application of the macroscale particle simulation code will also be given in this 
section. 

2. METHODOLOGY OF MACROSCALE PARTICLE SIMULATION (MACROS) 

The present simulation code uses super-particles for all the species consisting of 
the plasma. An advantage of using particle electrons with the finite mass is a 
capability of treating electron transport along/across the magnetic field in response 
to the global scale electric and magnetic fields Cl, 2, 131. The motion of electrons, 
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such as the E x B drift, magnetic drifts under the guiding center a~~roximatio~~ is 
naturally incorporated in the simulation code. 

The equations of motion for the ions are 

dv,“+ li2/dt = (ei/mi)[E”+“(xj) + (vi”+ r12/c) x 

dx” + ‘J=/dt z v,” + U2, I 

where, xi, vj are, respectively, the position and velocity of the ,jth ions; e. an 
are, respectively, their charge and mass; c is the speed of light; E and 
electric and magnetic field, respectively. It is noted in Eq. (1) that the el 
magnetic fields are those at the intermediate time level (n ccl), where a (R > 4) is a 
decentering parameter. 

For the electrons, the parallel motion is treated in the same way as the ions; t 
guiding center approximation is used for the perpendicular motion: 

dvy+ “j2/dt = (e/m,) E;+“(x~), v;+y=c(Ex 2)n+y txj), 

dxi” + 1’2,‘dt = (v;; + u2 f v”i+ 7). 
(2) 

The decentering parameters CI, y are both in the range 1~ a, y < 1. In Eq. (2), t 
decentering of the perpendicular velocity has an effect of suppressing unstable cross- 
field drift motion (see Section 3 for the analysis). We can also use Eq. (I) for the 
electrons if we study phenomena whose characteristic frequency is less than w,,. 
Even in this case, we can have Ax $ L, and Wpe At % 1 with a use of the followi~ 
field equations. 

Equations (1 j and (2) are time-discretized in the following manner: 

V H’ = v” + At(ei/mi)[En+a(2’+Y) + (V~+~/~/C) x 

X n+1.-Xfl+Atv”+1/2 

for the ions, and 

~;+~=v;-tAt(e/m,)E;+“(ii”‘~), 

X n+1=Xn+At[v;+1/2+V”lfY(~“+7)1 

for the electrons (the particle number index j has been suppressed in Eqs. (3 j an 
(4)). The particle position and velocity are defined on the same integer time level 
The fields En+‘, B”+” are evaluated at the known future particle position 
-n+y X =x* f yAt vn. For extension of the guiding center motion of the electro~s~ 
- P ‘c7& VVR . . . terms are to be added as implicit terms to the equations of motion 
and the field equations assuming that the magnetic moment p = (f) mpv:/ 
invariant. 

For the electromagnetic fields, a complete set of the Maxwell equations is used 
which can be coded in a time marching fashion: 
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(5) 

V.E=4nq, V.B=O. 

After time-discretizatin, the field equations assume the following forms: 

E n+1-E”=cAtVxB”ta-471Afjn+Y, 

(6) 
B n+l-Bn= -cAtVxE"+a. 

The electric and magnetic fields are defined on the same integer time level in 
Eq. (6). By using a linear interpolation of Bnta = clB”+’ + (1 -a) B”, Eq. (6) is 
rewritten into 

[l+(ctcA~)~VxVx]E”+~= [1-cr.(l-a)(cAt)2VxVx]En 

+cAtVxB”-4nAtjnty, (7) 

B “+r=B”-cAtVx[aE”+‘+(l-a)E”]. 

Other two equations of the Maxwell equations appear as the initial condition to the 
electromagnetic field: 

V. E” = 4nq”, V.B’=O. (8) 

Actually, however, a correction to the longitudinal part of the electric field is 
required in particle simulations since q and j defined on the discrete grid points do 
not strictly satisfy the continuity equation [15]. The Gauss equation 

V.E n+l=471qn+1 (9) 

is supplemented to Eqs. (7), (8). If we use a scalar potential 64, such that the final 
electric field E is given by E = E -V&J, where e is the solution to Eq. (7), then 
Eq. (9) is rewritten into 

(10) 

The current and charge densities appearing in Eqs. (7)-(10) are defined as sum- 
mation over the particles, i.e., j = C ejvjS(x - xj), q = C ejS(x -xi), where S(x) is a 
shape function to assign particle (Lagrangean) quantity to the neighboring field 
(Eulerian) grids. In order to make the whole equations implicit, i.e., stable for a 
large time step At, these current and charge densities must be expressed in terms of 
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the future electromagnetic fields En+ ‘, B”+ ‘, and other known quantities wit 
aid of the equations of motion, Eqs. (3), (4): 

jn+y(X)=Cejvjn+YS(X--~iy) 
Vn + l/2 

= V; + y dt(e,/m,)(E”+a(%;+Y) +------ 
c 

+CeCv;+Ydt(e/nz,)E;+“(~~++)+~nl+r(~~~y)] S(~-jsi”+~), (111 
e 

where the substitution xJ? +Y -+ %;+Y = xj’ + y At VJ’ has been done. 
The charge density is expressed in somewhat a different manner for better 

stability of the scheme [ 161. Namely, x7 + 1 is split into the known part x; + l an 
small displacement 6xj from it, 

= C ejS(x - x; + l )-V.Cej~xjS(x-xy+r), (12) 
i, e i, e 

which is derived by using the continuity of charge density. In Eq. (12), x; + 1 is t 
sum of terms excluding En+ ‘, B”+’ dependent terms from x,“+ I, 

x n41=Xn+vn+1/2At 

En+a(jjn+Y) ; ’ 
n+ l/2 

xB”+“(g”+Y) c 

=x”+v”&+;Al”i 

fl+ l/2 

mi 
E”(i”+Y)+ c -x B”(Pi’)] + (the rest, 6xj) (13) 

for the ions, and 

xn+l=xn+(v ;;+“2+v;+y)At 

=?r”+(v;+v;)At+;At’~E;+~(P”IY)+yAt(v~+’ -VT) 
e 

1 
=x”+(v;+v;)At+-iAt2m t E;(F+Y) - y At v; + (the rest, Sxj) 

for the electrons. 
Equations (7), (g), (10) together with Eqs. (11)-(14) form a closed set QE 

equations. Once the future electromagnetic fields E” + ’ and B” + ’ are determi~ed~ 
the particle velocity and position are advanced using Eqs. (3) and (4). As is 
generally the case with implicit schemes, the backward-shifted algorithm tends to 
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suppress high frequency waves with w At > 1 and properly reproduces other low 
frequency waves (see Section 3). When we set a = y = 1, a fully backward algorithm 
is obtained. However, for better accuracy, a = y x 0.6 are normally chosen. These 
properties will be analytically proven in Section 3, and numerically verified in 
Section 4. 

To solve the field-particle coupled equations described in this section, some 
iterations are required since there appear unknown electromagnetic fields E” + r and 
B”+ 1 in the equations. In order to have a better convergence of the iteration, the 
major part of jn+y in the right-hand side of Eq. (7) is subtracted from both sides of 
the equation. Also the same procedure is executed to iteratively solve Eq. (10). 
These procedures greatly help a convergence of the iterations. Another significant 
improvement is made in the summation appearing in Eqs. (11) and (12) to increase 
accuracy and to minimize the time-consuming summation through the particle list. 
Namely, 

= c ejEn(%J+Y) S(x - %y+Y) + a(E”+l -E”)(X) q”+y(x). (15) 

Then the summation through the particle list is calculated essentially only once in 
each time step. Moreover, only several field iterations are necessary to solve 
Eqs. (7) and (10) for the accuracy of one percent in the electromagnetic fields. An 
operation per time step costs about three times more for this implicit scheme than 
for the semi-implicit predictor-corrector scheme [ 1, 21. However, the choice of a 
large time step in the implicit algorithm easily compensates costly operations in 
each time step and enables us to do a far more efficient simulation (typically, one 
order less computation time for the same physics results). For the examples to be 
shown in Section 4, the run with both 32,000 electrons and ions, 32 x 64 cells takes 
only 3.5 s per time step on VP-200 (Fujitsu) computer. 

3. ANALYTICAL PROPERTIES OF MACROSCALE PARTICLE SIMULATION CODE 

High frequency electrostatic oscillations that one is not interested in for global 
scale simulations arise from the finite electron inertia. To prove numerical stability 
of the electrostatic part of Eq. (7) [Eq. (9)], the Vlasov-Poisson equations for an 
infinite plasma are analyzed. The Vlasov equation is given by af”+1’2/dt + 
v . aflax + (ej/mj)(E”+a + (v/c) x B,) . a&/& = 0, where the ambient magnetic field 
points the z-direction [unmagnetized ions are assumed]. Linearizing and 
integrating the equation along the orbit of characteristics by assuming the plane 
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wave solution E = E, exp[i(k . x - wt)] and the Maxwell dist~butio~ function f0 
for the electrons, yields the perturbed electron distribution function, 

where IS,, = eB,lm,c and U, = (2T,/m,)‘12, respectively, are the cyclotron frequency 
and the thermal speed of the electrons, 4 = k,v,/o,, and E= $0 At. The sin e/e 
factor arises from the time derivative term 6Yf”’ ‘/2/at = (f”” -f”)/dr -+ 
f;Jexp(-ioAt)-l]= -io(sins/s)fke n + l12. By subsitutingf,, and the unmaguet~~e 
ion perturbed distributionfki into Eq. (9), we have 

j77+“+‘/2 E;+‘= 
I exp( - i(a - i) 0 d t) 

+ (2$ilk2~:)C1 f 52Tti)l > 
, (1-v 

where <,, = ((sin E/E) o - n~Jkrve, p = (k,v,)*/2o&, ti = (sin E/E) o/kui, and Z(t) 
is the plasma dispersion function. Equation (17) gives a stability criterion of the 
macroscale particle simulation code against electrostatic waves. 

Figure 1 shows a solution o to Eq. (17) versus At for the Langmuir wave of the 
given wavenumber k = ki, TJT, = 1, and the decentering parameter a = 0.6. 
complex root of Eq. (17) is almost independent of the wavenumber (as expect 
and the Langmuir wave is recovered in the oPp At -+ 0 limit. For the finite time 
At, the real part o,= Re(o) of the solution first peaks at mpe At x 2 and 
decreases with mpe At. The damping increment 1 w, / (wj = Inn(o)) is found to 

1.0 

UpeAt 

FIG. 1. The frequency w, (solid line) and the damping increment ! wil (dashed line) of the Langmuir 
wave (k//B,) versus time step At under the time-decentered scheme Eq. (9). The parameters are 
k.& = O.l/&, T,/T,= 1, and u = 0.6. 
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at cepe At ~4 and it slowly decreases for mpe At >4. The damping factor 
exp( - 1 oi 1 At) per time step is always much smaller than unity. Therefore, even 
for a choice of small (backward) decentering parameter a, the Langmuir wave is 
suppressed immediately for arbitrary At ( > 1) value. 

The damping increment is easily obtained for the Langmuir wave and the 
upper hybrid wave in the cold electron limit (u, + 0). In this limit we 
have E;+“+‘12/E;:+l = (( w sin E/E)~ - &,)/c$, = exp( - i(a - 4) o At). Expanding the 
exponential term assuming (a - 4) o At < 1 yields oz x w$ + ok and oix 
- (a - +) cope At/2. 

The ion acoustic wave, on the other hand, is accurately reproduced by the 
present scheme when the time step is chosen small so that the wave frequency 
satisfies w At < 1. When cc) At < 1, the imaginary part of the solution to Eq. (17) is 
negative, oi/o I = -0.06, due to Landau damping (T,/T, = 10). The damping 
increment 1 wil starts increasing slowly by artificial damping as the time step 
increases. When the time step becomes large so that o At z 1, the increase in the 
damping increment is still 20%. The change in the frequency is small for this time 
step because the denominator of Eq. (17) is a large quantity. It is concluded that 
the present scheme with the choice of mpe At > 1 damps high frequency electrostatic 
waves and yet retains the low frequency waves. 

Stability of Eq. (7) against the decentering of the current density is examined 
before its wave properties are analyzed. For the simplest and most interesting case, 
we use the electric E x B current assuming immovable ions, j = en,cE x B,/Bi. For 
a plane wave solution E, B = E,, B, exp( - i(k,z - cot)), we have 

$e,,(,i(,-i)coAt)-l&&exp(-i(y-i)coAt)=O. (18) 

The solution to Eq. (18) for ck/w,, < 1 and wce/oPe z 1 is insensitive to CI and is 
given by w r z *u;Juce, Wi% - (o&/o,,)~ (y - 4) At. Therefore, the choice of y > 4 
makes the scheme Eq. (7) stable against the electron E x B drift current. In vacuum, 
Eq. (18) has a solution o, = & ck and wi = - c2k2(a - 5) AL Choice of M: > f always 
makes Eq. (7) stable to the light wave. 

The numerical property of the electromagnetic (magnetoinductive) part of Eq. (7) 
against waves is now analyzed. Assuming a plane wave solution, E, B z E,, B, 
exp[i(k,z - cot)] yields 

Cl+ (ack At)2] E;r’l= [ 1 - a( 1 - a)(ck At)*] E& 

+i(cAt)kxB;-4nAtj;+Y, (19) 

where k 3 E,, = 0. By expressing B; in terms of E;,, we have 

[ 1 + (ack At)2] E;,+ i 

= [ 1 - a( 1 - a)(ck At)2 - i(c2k2/6) At] E&-- 47c At j;+ 7, (20) 
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where 0 = (sin E/E) o, t‘ = (4) CD dt, and the relation k x E!&- = (G/c) B; has been 
utilized to relate E&. with B; of the same time level. The dispersion relation un 
the finite difference scheme Eq. (7) is obtained by equating E;+ ‘/ 
exp( - iw At). 

The dispersion equation for high frequency electromagnetic waves pro~a~ati~~ 
along the magnetic field B, is obtained by substituting into Eq. (20) the electron 
current j, = en,(c/B,)(E x B,/B, + i(&/w,,) E,)/(l - S*/wf,) [17]. Then for 
ci=y= 1, we have 

[I -+ (ck At)* - iw,, At(w,,/w,,)( --G/w,, * I)/(1 - f3’/wff,)] E”,i‘ i 

= [l - i(c2k2/&) At] E”+, (21) 

where El = E, & iE,” = E: exp(i(k,z - wt)). Equation (21) gives three stable 
circularly polarized electromagnetic wave branches [17] when At =O, i.e., 
R mode (w > wR), L mode (w> wL), whistler mode (the lower W 
Ew R, L = & j w,, 1 + (w& + ~f,/4)“~]. However, when the time step become 
wpe At > 1, the first two branches become heavily damped because their frequencies 
are then comparable to l/At. The damping increment of the R and L mo 
when wPp At = 1 are, respectively, (0~1 ~0.3Ow,, and O.l6w,, at ckJw,== 
(w,,/w,, = 1). On the other hand, the dispersion property of the whistler mode is 
not much altered compared to the theoretical one as far as o d t < 1 is sati he 
damping increment of the whistler mode is comparatively small, for 1% 
Q$.V z 0.23 - 6 x 10e3i at ck,/wpe = 0.5. 

‘The dispersion relation of the Alfven wave is properly reproduced. For this, the 
fluid equation is utilized to determine the current density: 

m,n(vy+ l -v~)/At=(l/c)j”+YxBo, 

E+(l/c)vixB,=O. 
(22) 

Solving Eq. (22) for j yields the ion polarization current, jn+y = (P/~.~)(c/v~)~ x 
(E ‘+’ - E”)/dt, where vA = B,/(4mnin)“2 is the Alfven speed. Substituting sorrier 
transformed j;+ Y = (1/4n)(c/v,)z ( -iG) E ;+ 1/Z into Eq. (20) fmally yields 

1 + (ack At)2 - i y (c/vJz] E”kr’l 

l-a(l-a)(ckAt)2-i~At+i 7 (c/v,,? E&. (23) 

The dispersion relation of the Alfven wave under the present scheme is hnally 
obtained by substituting the wave form into Eq. (23). - 

The real and imaginary parts of the solution to Eq. (23) are plotted versus the 
time step in Fig. 2. The chosen parameters are ck/wpe = 0.01, uA/c = 0.1, and the 
decentering parameter is a = 0.6. The frequency stays virtually at the same value 
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FIG. 2. The frequency w, (solid line) and the damping increment 1 CL+/ (dashed line) of the Alfven 
wave versus time step At under the time-decentered scheme Eq. (7). The parameters are ck/w,, = 0.01, 
vA/c = 0.1, and a = 0.6. 

o,(dt = 0) between IX,, At = 0 and 1000. The damping increment increases linearly 
with the time step and peaks at oPe At = 700. If we choose a fairly large time step 
o,, At = 100, i.e., wAt ~0.1, the ratio of the damping increment to the frequency 
becomes OJW, z -4.9 x 10-3; -e folding time of the wave amplitude is then 32.2 
wave periods. When we choose the larger decentering parameter CI = 1.0, we have 
WilWr - - -0.025 for w,, At = 100 and the -e folding time becomes 6.4 wave periods. 
Therefore, it is stated that the time-decentered (backward) scheme Eq. (7) with a 
choice of the small decentering parameter, say a = y = 0.6, is adequate to deal with 
low frequency electromagnetic phenomena with w At 4 1. 

4. NUMERICAL EXAMPLES OF MACROSCALE PARTICLE SIMLJLATION 

Two types of macroscale particle simulation are described in this section to 
numerically verify the properties discussed in Sections 2 and 3. As the first example, 
electromagnetic eigenmodes in a 2D magnetized thermally equilibrium plasma are 
examined. As the second one, a propagation and damping of the finite amplitude 
kinetic Alfven wave is described. 

4a. Analysis of Thermal Plasma- Eigenmodes 
As an initial condition a homogeneous, thermally near-equilibrium plasma is 

prepared by quiet start technique with TJT, = 10, w,,/mpe = 1, the electron beta 
8, = 0.09 and mi/m, = 100. A two-dimensional (x, z) periodic system of 32 x 64 cells 
is used with the system length L, = 2OOc/w,, and L, =4OOc/w,, (the ambient 
magnetic field points the z-direction). At the initial loading, approximately 15 elec- 
trons and ions are put in each cell. Time step of At = 200;~ is used in this section 
to follow the ion cyclotron motion correctly (wCiAt = 0.2). The electromagnetic 
fields are normalized as I? = eE/m,cw,,, B = eB/m,cw,,, and the scalar potential 
field as 6 = e&m,c’. A power spectrum analysis is performed using the maximum 
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entropy method [ 181. The data span used for this analysis is z 10000~;’ or 
1000;‘. The same run has been used for the spectrum analysis of Figs. 3 to 6; 
Figs. 3 and 6 show the spectra for the fixed value of ckx/mpe = h/L,; Figs. 4 an 
show those for the fixed value of ckJco,, = 2x/L,. 

Shown in Fig. 3 is the Fourier amplitude of the magnetic field B,(o, k,) [k, is 
fixed as stated above]. In the figure, the abscissa is the wavenumber ckz/mpe, the 
ordinate the frequency u)/o~~, and the Fourier amplitude B, is plotted on a 
logarithmic scale (lo4 range) above (to the right of) discrete baselines. The Fourier 
amplitude in the figure shows two series of distinct peaks. 8ne branch exten 
to the frequency higher than oCi corresponds to the whistler mode (lower R 
The other branch that approaches o -+ wCi ( =O.Olo,,) & the large waven~m 
corresponds to the Alfven wave mode (lower L mode). The same spectr 
branches) are also found in the E,, E,, and B, fields for the nearly 
gropagation. 

The theoretical dispersion relation for both branches are superimposed in Fig. 3 
by the solid (Alfven) and dashed (whistler) lines. The agreement between the 
measured dispersion of the simulation and that of the theory is excellent. (Note that 
the frequency value must be read by projecting the peaks onto the baseline.) 
in the theoretical dispersion relation, the finite size particle effect is included 
whistler branch in Fig. 3 extends up to CD/O~~ x 0.05 and disappears above it. 
caused by an artificial damping due to the time (and partly spatial) filterin 
notable that high frequency eigenmodes much above o GZ l/d t, such as th 
modes, are not detected. 

The power spectrum of the magnetic field B,(o, k,) for the nearly perpe~di~~~ar 
propagation in Fig. 4 shows a distinct branch that goes up through o x wCi. This 
corresponds to the fast magnetosonic wave whose theoretical dispersion relation is 

16' 

0.0 0.05 010 0.15 
W’q,e 

FIG. 3. The power spectrum of the magnetic field B,(o, k,) in a thermal equilibrium plasma. The 
spectrum is shown as a function of the frequency o/w,, and the discrete value of the parallel wave- 
number ck,/aw (corresponding to the vertical baselines) for the fixed value of ck,/w, ( = 2n/L,). Above 
(i.e., to the right of) each baseline, the Fourier amplitude is plotted on a logarithmic scale such that the 
increment between the baselines is 104. The solid and dashed lines are the theoretical dispersion relations 
for the Alfven and whistler waves, respectively. 
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FIG. 4. The power spectrum of the magnetic field B,(o, k,) for the same run as in Fig. 3, except the 
abscissa is now the perpendicular wavenumber ck,/w,, and that ck,/wpe = 24L, is fixed. The solid line in 
the figure shows the theoretical dispersion relation of the fast magnetosonic wave. 

FIG. 5. The power spectrum of the magnetic field B,(w, k,) as a function of the frequency o/oPp and 
the perpendicular wavenumber ck,/wpe for the fixed value of ck,/o,, ( =2n/L,). The lower frequency 
eigenmode is the kinetic Alfven wave branch and the upper eigenmode the fast magnetosonic wave 
branch. 
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FIG. 6. The power spectrum of the electric field E,(w, k,) for the nearly parallel propagation with 
ck,/w,, = 2x/L, being fixed. 
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shown by the solid line in the figure. The magnetosonic branch is also found in the 
E, field. On the other hand, the B,(o, k,) magnetic field of Fig. 5 has an eigenmode 
at the low frequency w z 2 x 10-3~pe which is the kinetic Alfven wave branch [l9]; 
its dispersion relation is given by 

where pi is the ion Larmor radius. An exact theoretical dispersion relation is 
calculated and plotted by the solid line in the figure. The same result was prgv~~~s~~ 
obtained by the semi-implicit algorithm (Fig. 1 of Ref. [a]). The other smaller 
peaks extending above o z wCi corresponds to the magnetosonic branch. These two 
branches are also found in the E, electric field. But, the kinetic Alfven wave branch 
is absent in the E,, B, fields. The linear wave analysis supports these observations; 
the ratio of the Fourier amplitude is j Bkz/Bky 1 x 5.5 for the magnetosonic branch 
and 1 B,,/B,I + 1 for the kinetic Alfven branch at ck,/wpe = 0.16 an 
ck=l~~~ = 2x/L,. There observed no eigenmode in the B, field above o z O.Mw,,, 
showing absence of the 0 mode (w zz mpe) due to the choice of the large time step, 
mpe dt = 20. The X mode is not observed in the B, field, either. 

As expected from the linear analysis of the electrostatic waves in Section 3 un 
the backward scheme Eq. (9), no eigenmode is found above ~z0.1~~~ in the 
electric field for the parallel propagation of Fig. 6. The Fourier amplitude of the 
field is by two orders of magnitude smaller than that of the E, field in the same run. 
The lower faint peaks present at the middle of the broad plateau o c oCi corres- 
pond to the ion acoustic wave. The upper peaks which are less damped by 1 
wave analysis are also observed. Theoretical dispersion relations are shown wit 
solid lines in the figure. The faintness and broadness of these modes may be due to 
damping of the mode branches under the given parameters. 

4b. Propagation and Damping of Kinetic Alfven Wave 
The kinetic Alfven wave is the Alfven wave for which wave-particle interactions 

are important [19]. This wave propagates almost perpendicularly to the ambient 
magnetic field B,, since k,< k,xpi l. Also this wave is heavily Landau dampe 
due to its parallel electric field. 

In this simulation, a two-dimensional periodic system with 32 x 64 cells is us 
with L, = 5Oc/w,, and L, = 4OOc/o,, . The plasma parameters are Ti/Te = 
Pi = 0.36, mce/‘~pe = 1, and mi/m, = 50. Then the ion Larmor radius is pi% 3c/o,,. 
The time step of o,, At = 20 is adopted here to cross-check the previous results [2] 
and to trace the ion cyclotron motion, i.e., oCiAt =0.4. At the beginning o 
simulation run, finite amplitude kinetic Alfven wave (monochromatic) is load 
terms of charge and current density perturbations mto a thermally quiet plasma 
with the wave mode number n, =n, = 1 (ck,/w,,=O.l3, ck,/o,,zO.016). T 
corresponds to k,p, z 0.38. (For the details of the physics results, refer to Ref~ 123 )~ 
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FIG. 7. The (E,, E,) electric field and the BY magnetic field of the kinetic Alfven wave at time 
t/z, = 2.8. 

FIG. 8. The propagation of the kinetic Alfven wave is shown for the magnetic field B,(z, t; x) (sliced 
at constant x-coordinate) between i/zA = 0 and 2.8. The initial sinusoidal wave form is well preserved 
with a physical damping of the wave. 

FIG. 9. The same as Fig. 8 except that the electric field Ex(z, t; x) is shown here. 

-1.0 0.0 1.0 

w 

FIG. 10. The electron distribution function parallel to the ambient magnetic field for t/~~ = 0 and 1.4. 
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The amplitude of the initially loaded wave is about 15% of the ambient magnetic 
field. 

Shown in Fig. 7 are the (E,, E;) electric field and the B, magnetic field at 
t/tA =2X, where zA = 27t/k,uA is the Alfven wave period. The major electric field is 
the E, field (E, < 3 x lo-*) and the B, field (B,-~0.14). The loaded wave 
propagates quite obliquely to the ambient magnetic field. The propagation of the 
kinetic Alfven wave is clearly shown in the birds-eye-view ~1st of Fig. 8, where 
magnetic field B,(z, t; x) is plotted for the fixed x-coordinate up to l//zA z 2.8. 
initially loaded sinusoidal kinetic Alfven wave is found to propagate nicely keeping 
the initial wave form. The E, electric field in Fig. 9: which consists of almost the 
space charge field (hence noisy compared to the B, tield), always keeps the same 
phase with the B,, field. 

As noted earlier in this section, the kinetic Alfven wave is subject to 
damping. The damping increment 1 wi 1 is measured from the decrease in t 
magnetic energy which quite well follows exp( - 2 ( U.I~ 1 t). The measured freq~e~~~ 
and the damping increment are w/k,v, = 1.08 - 1.6 x 10-2i. The theory of the 
kinetic Alfven wave gives cor,,/kivA = 1.10 - 1.4 x lO-*i. The agreement is almost 
complete. Associated with the wave damping, heating of the plasma is detecte 
Shown in Fig. 10 is the electron velocity distribution function parallel to the 
ambient magnetic field. Flattening in the distribution function is observed at the 
velocity corresponding to the wave phase speed (o/k= z 0.15). 11 these results are 

uite in good agreements with the previously obtained semi-implict sirnu~~t~o~ 

The total energy of the present simulation system ecreases slowly an 
monotonically due to the use of the time-deeentered (backward) scheme. 
occurs a small amplitude oscillation in the magnetic and electric field energy 
a slight mismatch in the initial wave loading. The period of this energy os~~l~at~o~ is 
exactly 1 rA which results from energy transfer between the wave and the particles 
(mainly ions). When the magnetic energy decreases, there occurs an increase in 
both the wave electric field energy and the particle kinetic energy, and vice versa. 
The decrease in the total energy (the field energy plus the kinetic energy) of t 
simulation system is within a percent up to three wave periods. On the other 
we do not have anv symptom of unphysical total energy increase that le 
blowup of the simulation run. This is one of the advantages of the ~~c~~~~~~~ 
particie simulation code. 

5. SUMMARY AND CONCLUSION 

A fully implicit and multi-dimensional electromagnetic particle sirnu~~t~o~ 
code-macroscale particle simulation code, was described in this paper. T 
field-particle coupled equations were derived in Section 2 using a complete set of 
the Maxwell equations and the equations of motion. The time-decenbere 

581/79/l-15 
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cretization technique was made use of throughout the scheme to achieve large time 
and spatial scales compared to the electron characteristic time and spatial scales, 
i.e., ace, mpe, and 2,. A closed set of the field-particle coupled equations Eqs. (7), 
(S), (10) with Eqs. (11~(14) was solved iteratively. Particles were advanced using 
Eqs. (3) and (4). The summation through the particle list could be minimized and 
only a few iterations (usually two) were necessary for the examples shown in Sec- 
tion 4. By virtue of the time-decentered (slightly backward) implicit algorithm, this 
simulation code was numerically stable and had an adequate numerical accuracy 
for the low frequency waves. 

The advantages of the present simulation code were the following. First, the 
restriction on the time and spatial scales were relaxed to dx 9 A, and mpe dt ti 1. 
Second, the decentered time differential algorithm which was used throughout the 
present scheme suppressed high frequency electrostatic and magnetoinductive 
waves; low frequency waves were proven to be properly reproduced. (See Sections 3 
and 4 for the details.) An almost pure artificial damping of high frequency waves 
introduced by the backward time discretization in the macroscale particle simulation 
code made the nonlinear behavior of the plasma quite credible. Finally, in contrast 
to fluid codes, the use of the finite mass electrons enabled us to properly treat 
large-scale scalar potential electric field and the electron response to the slowly 
varying electromagnetic waves. 

As a numerical verification of the scheme, two types of the 2D magnetized 
plasma simulations were performed. The eigenmodes in a thermal equilibrium 
plasma and the propagation of the finite amplitude kinetic Alfven wave were 
examined in Section 4. In the former simulation, low frequency eigenmodes such as 
the whistler wave, the Alfven wave, and the fast magnetosonic wave were shown to 
be properly reproduced, whereas high frequency eigenmodes were suppressed and 
were not detected. In the latter simulation, the initially loaded kinetic Alfven wave 
showed theoretically predicted frequency and damping, and its overall wave form 
was nicely preserved even after several wave periods. As a nonlinear phenomenon, 
the acceleration of the electrons was also observed. The distortion of the wave was 
even smaller for the fully implicit scheme than for the semi-implicit predictor- 
corrector scheme [Z], probably due to damping of medium frequency waves 
(noise). 

Before closing this paper, the proper way of applying the present particle 
simulation code is mentioned. As noted in Section 1, the present simulation code 
was developed to study global (MHD) scale kinetic behavior of magnetized 
plasmas. There are no a priori restrictions on the time step At and the grid interval 
dx to the present scheme. This scheme is free from the Courant-Friedricks-Lewy 
condition since the field equations are implict. But, the restrictions on At and Ax 
arise from physical considerations. First, the time step and the grid interval must be 
small compared to the characteristic scales (;o, L of the phenomena to be studied, 
i.e., o At 4 1 and Ax/L 4 1. Second, fast particles must not travel more than one 
wavelength within a time step to avoid appearance of a false force, i.e., k,,vAt < 1 
must be satisfied where v is the fastest of the thermal and drift speeds of particles. 
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Third, if the ions are treated as magnetized species and their Larmor motion is 
traced, the time step must satisfy oCi At < 1. 

The following argument results from the aforementioned restrictions. The 
wavelength of some drift waves (e.g., the lower hybrid drift waves) is scaled by the 
electron Larmor radius pe which can be close to the Debye length ,I, 
(PelL = %&*J in nuclear fusion plasmas. Similarly, the wavelength of ion 
acoustic waves becomes %,I, when their frequency is close to the ion plasma fre- 
quency oPi. On the other hand, the wavelength of the Alfven wave of o xwCi is 
close to c/oPi. Since these two scale lengths are incompatible, one has to introduce 
theoretically derived or phenomenological collisions (if any) into the equations of 
motion to incorporate the transport effects associated with high frequency, minute 
scale turbulence. 

As for the future plan, inclusion of plasma inhomogeneity and modification of 
boundary conditions to other than the periodic condition and conducting walls, 
the urgent problems. The extension of the code along this line is not di~cu~t 
virtue of a simple form of the field equations adopted in the present scheme, 
Eqs. (7) and (10). A torus effect (e.g., a tokamak) and ionization collisions ma 
also important for applications to some plasmas. Actually, these problems are now 
under study and will be reported in the future. 

ACKNOWLEDGMENTS 

The author is grateful to Dr. T. Sato who suggested him to develop the macroscale particle simulation 
code and provided him with valuable discussions. Constructive review by referees is also acknowledged. 
This work was supported by a Grant-in-Aid of the Ministry of Education, Sciences, and Culture of 
Japan. 

REFERENCES 

1. M. TANAKA AND T. SATO, Phys. Fluids 29, 3823 (1986). 
2. M. TANAKA, T. SATO, AND A. HASEGAWA, Geophys. Res. Lett. 14, 868 (1987). 
3. C. K. BIRDSALL AND A. B. LANGDON, Plasma Physics via Computer Simulation (McGraw-Hill, 

New York, 1983). 
4. R. J. MASON, J. Comput. Phys. 41, 233 (1981). 
5. J. DENAVIT, 1. Comput. Phys. 42, 337 (1981). 
6. J. U. BRACKFIILL AND D. W. FORSLUND, J. Comput. Phys. 46, 271 (1982). 
7. D. W. FORSLUND AND J. U. BRACKBILL, Phys. Rev. Left. 48, 1614 (1982). 
8. A. B. LANGDON, B. I. COHEN, AND A. FRIEDMAN, J. Comput. Phys. 51, 107 (1983). 
9. D. C. BARNES, T. KAMIMURA, J.-N. LEBOEUF, AND T. TAJIMA, J. Comput. Phys. 52, 480 (1983). 

10. T. KAMIMURA, T. TAJIMA, J. N. LEBOEUF, AND D. C. BARNES, J. Comput. Phys., in press. 
11. D. W. HEWETT, A. B. LANGDON, AND C. E. MAX, Bull. Amer. Phys. Sot. 31, 1604 (1986). 
12. M. TANAKA AND T. SATO, in Proceedings International School for Space Simulation, Kauai, Hawaii, 

1985; Institute for Fusion Theory Report No. 117, Hiroshima University, 1986. 



226 MOTOHIKO TANAKA 

13. M. TANAKA, in Proceedings, 12th Numerical Simulation Meeting, San Francisco, 1987. 
14. A. B. LANGDON AND D. C. BARNES, in Multiple Time Scales, edited by J. U. BRACKBILL AND 

B. I. COHEN, p. 335 (Academic Press, New York, 1985). 
15. A. B. LANGDON AND B. F. LASINSKI, in Methods Comput. Phys. 16, 327 (1976). 
16. A. B. LANGDON, J. Compuf. Phys. 30, 202 (1979). 
17. T. H. STIX, The Theory of Plasma Waves (McGraw-Hill, New York, 1962). 
18. T. J. ULRYCH AND T. N. BISHOP, Rev. Geophys. 13, 183 (1975); S. M. KAYE AND S. L. MARPLE, Proc. 

IEEE 69, 1380 (1981). 
19. A. HASEGAWA AND L. CHEN, Phys. Fluids 19, 1924 (1976). 


